SSブログ

第?回 問題演習 [ネコ騙し数学]

第?回 問題演習


第0回の内容に関する問題演習をすることにするにゃ。


問題1 次の集合はどの演算について閉じているか。

(1) N={自然数}  (2) P={3で割って1余る整数}

(3) X={係数が整数である2次以下の整式}

【解】

(1) nmを自然数とすると、n+mは自然数になるので、つまり、n+m∈Nだから、加法・足し算については閉じている。

引き算・減法については、n=1m=2とすると、1−2=−1となり、これは自然数ではないので、閉じていない。

乗法・掛け算については、n×m∈Nだから、閉じている。

除法・割り算については、n=1m=2とすると、n÷m=1/2=0.5になるので、閉じていない。

よって、閉じているのは、加法と乗法。


(2) 3で割って1余る整数は、ある整数kがあって、3k+1とあらわすことができる。

ということで、

  加法 (3n+1)+(3m+1)= 3(n+m)+2 ・・・ 余りは2

  乗法 (3n+1)×(3m+1)= 9nm+3(n+m)+1 ・・・ 余りは1

  減法 (3n+1)−(3m+1)=3(n−m) ・・・ 余りは0

  除法 4÷1=4 ・・・ 余りは0

となり、乗法以外成り立たないことが分かる。


(3) 加法、減法については閉じている。

  

a₀a₁a₂b₀b₁b₂がが整数ならば、上の式の係数はすべて整数になるからだにゃ。

乗法、除法については、x×x²=x³
x÷x²=1/xなどが反例として挙げられ、乗法、除法については閉じていない。


問題2 実数全体の集合において、演算*を次のように定める。この演算は交換法則が成り立つか。また、結合法則は成り立つか。

  

【解】

交換法則

  

結合法則

  

よって、結合法則は、一般に成立しない。

問題3 次の【Ⅰ】、【Ⅱ】が成り立つことを証明せよ。

  

これを用い次の2重根号をはずせ。

  

【解】

証明には、因数分解の次の公式を使うにゃ。

  

p=√aq=√qとおくと、上の式は

  

よって、

  

ということで、

a>0b>0のとき

  

a>b>0のとき、

  


(1) a+b=7ab=10になるabを見つけるにゃ。そうすると、(a,b)=(2,5)または(a,b)=(5,2)になる。

どっち使ってもいいけれど、(a,b)=(2,5)を使うと、

  

となるにゃ。

(2) a+b=15ab= 50、そして、a>b>0になるabを見つけるにゃ。そうすると、a=10b=5

だから、

  

となる。

(3) これは

  

となるので、・・・。

あとは、自分でやるべきだにゃ。


問題4 有理数abを用いて、a+b√2と書ける数全体の集合をAとする。次の数がAに属するかどうか判定せよ。

  

【解】

(1) これは、a=−2/3b=0だから、Aに属する。

(2) これは、

  

となり、Aに属するにゃ。

(3) これは、難問かもしれない(^^)

3Aに属するならば、√3=a+b√2となる有理数abが存在する。

  

⑨の左辺は有理数だから、⑨が成立するためにはa=0でなければならない。

 ――a≠0だと、左辺は有理数、右辺は無理数になる!!――

よって、

  

となり、bは無理数になる。

bが有理数という仮定と矛盾するので、√3=a+b√2とあらわせる有理数は存在しない。

よって、√3Aに属さない。


背理法ってやつだにゃ。


3や√6が無理数であることを使って駄目ということになると、この証明までしなければならなくなる。どこまで既知として使っていいのかわからないにゃ。


(4) これは

  

となるので、Aに属する。



「⑨が成立するために、a=0でなければならない」としたけれど、これは証明すべきことなのかもしれない。

ということで、

問題 pqが有理数で、p+q√3=0であるならば、p=q=0であることを証明せよ。ただし、√3が無理数であることを用いてよい。

【解】

q≠0と仮定すると、

  ?-02.png
左辺は無理数、右辺の有理数になってしまうので、q=0

q=0p+q√3=0に代入すると、p=0

よって、p=q=0である。




タグ:中学数学
nice!(0)  コメント(0)  トラックバック(0) 

nice! 0

コメント 0

コメントを書く

お名前:
URL:
コメント:
画像認証:
下の画像に表示されている文字を入力してください。

トラックバック 0

この広告は前回の更新から一定期間経過したブログに表示されています。更新すると自動で解除されます。