So-net無料ブログ作成

ワンポイントゼミ26 [ネコ騙し数学]

ワンポイントゼミ26


ねこ騙し数学の記事の中では

  

と書いたけれど、この不等式は

  

の方がいいのかもしれないね。

ちなみに、n!とは

  

のこと。

ということで、

  

である。

また、定義から

  

という関係がある。

  

になっているからね。

そして、さらに0!を

  

と定義する。

そうすると、

  

で、0のときにも①が成立することになる。

n=1のとき1!=2⁰

n=2のとき2!=2¹

だから、①の不等式で等号が成立する。

n≧3では、⑨が成立する。

この証明は、ねこ騙し数学の記事に書いてある。


ということで、

となる。

 


また

  

である。

  

になっている。

n=4のとき

  

だから(1)は成立。

n=kのとき

  

が成立するとする。

n=k+1のとき

  

よって、数学的帰納法より(1)が成立する。

では、ここで一つ問題!!


問題

nmを1より大きい整数とする。

このとき、

  

を満たすnとmを求めよ。

【答】

(n,m)=(2,4)、または、(n,m)=(4,2)

2⁴=4²=16だからね〜。

しかし、これでは数学の解答にならない!!

今日のねこ騙し数学の記事がヒントだにゃ。


②の両辺の対数をとる。

そうすると、

  

n≠0m≠0だから、nmで両辺を割ると

  

ということで、

  

という関数が出てくる。

で、とりあえず、n≦mとする。

そうすれば、

  

となり、

  

というxの解の個数を求める問題に帰着できる。

BakdaDai-Wdai.pngf(x)を微分して、この増減を調べる。

そすると、この関数はx<eで増加、x>eで増加するから、上の方程式が解を2つもつためには、片方の解がx<e<3より小さくなる必要がある。

したがって、1<n<3を満たすnは2しかない!!

だから、n≦mのとき、2⁴=4²の組み合わせしかない。

なのだが、

2⁴=4²または4²=2⁴を知らないヒト、あるいは、これに気づかないヒトはどうするんだろう。
この問題は、大昔、とある私立大学の入試問題として実際に出題されたものだけれど、オレは試験会場でこの組み合わせに気づかないかもしれない(^^

この問題の解答には

  「2⁴=4²4²=2⁴」は既知として・・・

と書いてあったように記憶している。


これは、難関(私立)大学を目指す受験生にとって既知の内容で、「2⁴=4²4²=2⁴」は絶対に知っておかないといけないことだったのか。


タグ:微分積分
nice!(0)  コメント(0)  トラックバック(0) 

nice! 0

コメント 0

コメントを書く

お名前:
URL:
コメント:
画像認証:
下の画像に表示されている文字を入力してください。

トラックバック 0