SSブログ

[境界方程式の組み立て(ラプラス型)] [ネコ騙し数学]

[境界方程式の組み立て(ラプラス型)]


 ここまでで境界方程式(内点方程式)を作成する計算公式は全て出揃ったので、いよいよ境界方程式を組み立てます。

 

 境界方程式と内点方程式は以下でした。

  

ddt^3-001.png

 

 内点方程式(2)の左辺の境界積分を、図-1の一要素kだけ取り出して書いてやると、境界上でψ(c)とその外法線微分値q(c)を線形近似した場合、

  

の形になります。

 ψjqjは、境界要素kの両端点にある境界節点jj+1でのψ(c)q(c)の値を表し、これらが未知数です。bj(k)hj(k)は、境界要素kの配置と特異点η)の位置だけから計算できるのでした。具体的な形は前回にあります。

 

 図-1に示したように、要素kの節点j+1は、隣の要素k+1と共有されるので、そこに注意して(2)の左辺を(3)(4)を使って書くと、

  

となります。いま境界要素はn個あり、境界要素と節点は左回りに順序付けられているとします。ψ1q1の係数にb1(n)h1(n)が現れるのは、要素nと要素1が節点1を共有するからです(図-1)。また境界要素と節点が同数あるのは、図-1から明らかです。式(5)で各ψjqjの係数を、BjHjと書く事にします。

  

です(j1の場合は、適当に変更して下さい(^^;))。Σ記号を導入して、

  

と書けます。一方(2)の右辺はψ*gも既知関数なので、なんとかすれば具体的値がわかるだろう、という事で(^^;)、たんにwと書きます。よって、

  

 ところで内点方程式(2)の目的は、基本解の特異点η)を任意に動かして、解析領域R内の任意の位置における未知関数ψの値を、ψ(ξη)の形で得る事でした。η)の位置が変われば、BjHjwの値も当然変わります。そこで、η)iηi)に取った時の値をBijHijwiと書く事にします。

 i12,・・・,[何個でも良い]です。

 そのような意味で式(8)は、

  

と書くべきだぁ~という事になります。

 

 次に前回の結果から、特異点iηi)を節点jに近付けて行けば、式(9)左辺のψjに関する和、

  

から自然に、

  

が導かれ、内点方程式(2)は連続的に境界方程式(1)に移行できるのでした。kjは、節点jにおける境界の内角です。

 iηi)→節点jの時のBijHijの具体的形も前回の結果で与えられます。一般に式(11)に相当する項は境界要素法では、自由項(free Term)と呼ばれます(←あまり役に立たない蘊蓄(^^;))。

 (10)(11)が起きるのは、iηi)が節点jに一致する時だけだという事に注意し、式(9)を境界方程式として書き直すと、

  

になりますが、今度はiηi)がどれかの節点jと一致するので、i12,・・・,nです。

 なおdijは、クロネッカーのデルタです。普通それはδijと書かれますが、今までδはデルタ関数や変分の意味にさんざん使ってきたので、ここはdにしました(^^;)

 

 式(12)をさらに整理するために突然ですが、行列とベクトルの積を思い出して下さい。行列A(aij)とベクトルx(xi)との積は、

  

って書きますよね?。これを成分で書くと、

  

ですよね?。・・・式(12)と同じじゃないですか!(^^)

  

です。

 さらに、

  

と以後略記します。(14)で行列はn×nの正方行列、ベクトルの次元は必ずnです。

  

 形式的には式(15)が、境界節点で離散化して組み立てられた境界方程式の全てです。ψqの係数行列BHは既知であり、wも既知ベクトルです。後は(15)を、ψqに関する連立一次方程式とみなして解けば良い訳ですが、なお留意点がいくつかあります。

 


nice!(0)  コメント(0) 

nice! 0

コメント 0

コメントを書く

お名前:
URL:
コメント:
画像認証:
下の画像に表示されている文字を入力してください。

この広告は前回の更新から一定期間経過したブログに表示されています。更新すると自動で解除されます。