So-net無料ブログ作成

第19回 ひずみテンソルと応力テンソルの関係 [ネコ騙し数学]

第19回 ひずみテンソルと応力テンソルの関係

 

§1 ひずみテンソルと応力テンソルの関係

 

弾性体が変形し、その相対的な変位がvであるとする。このとき、ひずみテンソルΦの成分は

  ten19-001.png

となる。

等方的な弾性体では、応力テンソルΨとひずみテンソルΦの主軸は同じと考えられるので、ΦΨの共通な主軸の方向の長さ1のベクトルをabcとする。ひずみテンソルの主値と応力テンソルの主値をそれぞれε₁ε₂ε₃σ₁σ₂σ₃としたとき、

  

という関係が成り立つものとする。

等方的なので、

  

と考えられので、(1)式を

  

と変形することができる。

ここで、

  

とすれば、(2)式は

  

また、

  

は不変量で、体積膨張率である。

したがって、

  

である。

同様に、

  

つまり、

  

である。

このλμLamé(ラメ)の定数と呼ぶ。

また、応力テンソルΨ

  

これに(3)式を代入すると、

  

単位テンソルをIとすると、

  

また、

  

だから、

  

ひずみテンソルの成分を、応力テンソルの成分をとすると

  

となる。

 

テンソル積と単位テンソルを行列で表すと、

   ten19-002.png

だから、

  

また、

  ten19-003.png

 

 

§2 弾性体の釣り合い

 

弾性体内の各点の密度ρに比例した力ρKが単位体積あたりに働いているとする。さらに、弾性体の変形にともなう応力テンソルをΨとする。

弾性体内の任意の領域をVとし、その表面をSSの外法線ベクトルをnとする。

このとき、力の釣り合いは

  ten19-004.png

(テンソルの)ガウスの発散定理から

  ten19-005.png

Vは任意に選べるので、

  

となる。

これが弾性体の釣り合いの方程式である。

Kの成分をΨの成分をとすると、

  

 

特に、K=0のとき、

  

つまり、

  ten19-006.png

である。

弾性体が等方的であるとき、

  

となるので、よって、(6)式は

  

となる。


タグ:テンソル
nice!(0)  コメント(0) 

nice! 0

コメント 0

コメントを書く

お名前:
URL:
コメント:
画像認証:
下の画像に表示されている文字を入力してください。