So-net無料ブログ作成

台形公式の精度を求める問題 [ネコ騙し数学]

台形公式の精度を求める問題


台形公式の精度を求めるいい問題があったので紹介します。


問題

a<bのとき

  

となるようにkの値を定め、関数F(x)

  

とする。

この関数について、ロールの定理を繰り返して使うことによって

  

となるようなξが存在することを示せ。

【解】

x=aのとき、

  

x=bのとき

  

F(a)=F(b)=0かつ、F(x)は、閉区間[a,b]で連続、開区間(a,b)で微分可能。

よって、ロールの定理よりF'(c)=0となるa<c<bが存在する。

②を微分すると
  

よって、F'(a)=0

F'(a)=F'(c)=0かつ、F(x)[a,c]で連続、(a,b)で微分可能。

よって、ロールの定理より

  

となるξが存在する。

ξ<>aだから、

  

これを①に代入すると、
  

(解答終了)


s-graph-11.png[a,b]f(x)>0のとき、

  

は、曲線y=f(x)x軸、x=ax=bで囲まれた部分の面積であり、

  daikei-gosa-siki-03.png

は、右図の台形ABCDの面積である。

問題の結果より、

  

という関係があり、右辺はSTで近似したときの誤差を与える。
[a,b]

  

n等分とする、

n等分したのだから、

  

この区間に台形公式で近似すると、
  daike-gosa-siki-04.png

よって、

  

ここで、の最大値をMとすると、

  

これが台形公式の誤差限界である。

ちなみに、以前紹介した中点公式
  
の誤差限界は

  


(1)と(2)のMは等しくないので単純な比較はできないけれど、Mが同一であれば、中点公式は台形公式の誤差の1/2ということになる。

だから、一般論になるけれど、中点公式の方が台形公式より精度はよいということになる。

Daikei-gosa-01.png右のグラフは、

  

を台形公式を用いて計算し誤差と分割の幅hとの関係を示したもの。

このグラフだと少しわかりにくいと思うのだが、h=0.1からh=0.01へとh1/10になると、誤差は約その2乗である(1/10)²=1/100になる。


計算した生のデータのほうがわかりやすいと思うので、生データを以下に示す。


分割幅 h 誤差

0.100000 0.000416666171
0.010000
0.000004166667
0.001000
0.000000041667
0.000100
0.000000000417

この関数の場合、綺麗に1/100になっている。


Daikei-gosa-02.pngこれだとまだ直観的に理解しづらいかもしれないので、[0,1]の分割数nと誤差との関係についてのグラフを示す。
タグ:微分積分
nice!(0)  コメント(0)  トラックバック(0) 

nice! 0

コメント 0

コメントを書く

お名前:
URL:
コメント:
画像認証:
下の画像に表示されている文字を入力してください。

トラックバック 0