So-net無料ブログ作成

空間曲線 [ネコ騙し数学]

空間曲線

 

空間の点Pの描く空間曲線は

  

で与えられるが、これは原点Oを始点とする点Pの位置ベクトル

  

と与えられることと同等である。

 

そして、接線ベクトルは

  

で与えられる。

 

さらに、この曲線Cが滑らかなとき、位置ベクトルr(a)からr(t)までの弧の長さs(t)

  kukan-siki-001.png

となり、

  kukan-siki-002.png

となり

  kukan-siki-003.png

よって、

  

となる。

ds線元素という。

 

stの関数であるが、逆にtsの関数と考えられるので、曲線は、曲線の長さを用いて

r=r(s)

とあらわすことが可能。

  

は曲線に接しsの増加する方向に向かうベクトルである。

何故ならば、

  

で、ベクトルtの向きは接線ベクトルdr/dtと同じだから。

ss+Δsに対応する曲線上の点をPQとし、とすれば

  

だから、t単位接線ベクトルである。

 

Qにおける接線ベクトルとPにおける接線ベクトルのなす角度をΔθとすれば、

  

は、曲線の長さに対する接線の向きの変化率をあらわし、

  

を点Pにおける曲率という。この定義から明らかなように曲率は正または0であり、曲線上の各点でκ=0である時は、この曲線は直線である。

 

単位法線ベクトルt同士の内積tt=1を微分すると、

  

となり、tに垂直である。また、

  

と同じ向きの単位ベクトルをnとすれば、

  

このnPにおける(単位)主法線ベクトルといい、

  

となる。

 

また、曲率は

  kukan-siki-004.png

 

曲率の逆数
  

曲率半径といい、曲線上のPから引かれたベクトルρnの終点を曲率半径の中心という。

 

また、曲線上の点Pにおける接線ベクトルと主法線ベクトルの外積

  b=t×n
を、点Pにおける曲線の(単位)従法線ベクトルという。

したがって、

  

 

tnbは互いに直交する単位ベクトルで、右手系をなす。

また、

  

が成立し、τ捩率(れいりつ)という。

 

bb=1なのでこれをsで微分すると
  

となり、bは直交する。

さらに、tb=0sで微分すれば、

  

となる。

  

なので、第2項はκnb=0である。よって、
  
となり、tは垂直。

故に、 btに垂直であり、nと同じ方向である。

 

tnbの3つの単位ベクトルは右手系を構成するので、

  n=b×t=−t×b

となる。

これをsで微分すると、

  kukan-siki-005.png

となる。

 

  kukan-siki-006.png

の3つの公式を合せてフルネ・セレの公式と呼ぶ。

 


nice!(0)  コメント(0)  トラックバック(0) 

nice! 0

コメント 0

コメントを書く

お名前:
URL:
コメント:
画像認証:
下の画像に表示されている文字を入力してください。

トラックバック 0