SSブログ

三角関数の第17回の問題2の(3)を微分を使って解く [ネコ騙し数学]

三角関数の第17回の問題2の(3)を微分を使って解くと・・・


問題

  

の解の個数は、aの値によってどう変わるか、求めよ。

第17回の問題2の(3)を、微分を使ってとこうという企画です。

  

とする。

この関数の最大、最小値やグラフの概形を書くために微分する。

  

で、極値を求めるためにf'(x)=0とする。

  

0≦x<2πcosx=0を解くと、cosx=0の解はx=π/23π/2

2sinx+1=0の解は

  

となる。

極値の判定は、f''(x)を求めて、f'(x)=0を満たすxに対して、f''(x)<0ならば極大、f''(x)>0ならば極小を用いてもいいけれど、この場合、計算が少し面倒なので、増減表を使って極値の判定をすることにするにゃ。




そして、

  
を前回と同じように

  

として、この2つの求める。

そうすると、次のような図が得られ、答えが求められる。

sankaku-17-05.jpg



第17回 問題演習ラスト [ネコ騙し数学]

第17回 問題演習ラスト

問題1

  

とする。

(1) x=sinθ+cosθとおき、yxの式であらわせ。

(2) 0<p<1のとき、yの最大値および最小値を求めよ。

【解】

(1)

  

x=sinθ+cosθ2乗する。

  

よって

  


(2) 合成公式から、

  

これで、xの定義域が定まった。

そして、(1)で求めたxの2次関数を基本変形する。

  

また、0<p<1であるので、この2次関数の頂点は

  

である。

このグラフの概形を書くと、x=−pのとき最小で、x=√2のときに最大になることが分かる。

sankaku-17-01.jpg

ということで、x=−pのとき最小でが最小値で、x=√2のとき最大で最大値はである。

(解答終わり)


xの範囲を求めるのに三角関数の合成公式を使っているけれど、シュワルツの不等式を使うと

  

と簡単に求まる。

ちなみに、シュワルツの不等式は

  

この他にもいくつか方法はあるにゃ。

 


問題2 関数

  

がある。

(1) sinx=tとおきyxであらわし、そのグラフを書け。

(2) yの最大値、最小値を求めよ。また、そのときのxの値を求めよ。

(3) xについての方程式

  

の実数解の個数をaによって分類せよ。

【解】

(1)

  


sankaku-17-02.jpg

(2)yを基本変形する。

  

このことから、t=−1/2のとき最小で−5/4が最小値。t=sinx=−1/2なので、x=7π/611π/6である。

t=1のとき最大で、最大値は1。t=sinx=1なので、x=π/2


(3)
  


  

は同値なので、(1)の結果を用いて、上の交点の数を調べる。
このままでは調べられないので、

  

との交点を調べる。


sankaku-17-03.jpg

そうすると、

  a=−5/4のとき、t=−1/2で1個。

  −5/4<a≦1のとき、2個。

  1<a≦1のとき1個。

これでオシマイじゃじゃ〜ない。


  

をグラフにすると、次のようになる。
sankaku-17-04.jpg
つまり、t=sinxを満たすxは、t=±1のときは1個。−1<t<1のとき2個ある。

ということで、解の個数は、

  a=−5/4のとき、2個

  −5/4<a<−1のとき、4個

  a=−1のとき、3個

  −1<a<1のとき、2個

  a=1のとき、1個

これが(2)の答えとなる。


微分を使えば、次のような図を書けるけれどね〜。

sankaku-17-05.jpg

このグラフを見れば、このことがわかると思う。

ちなみに、点線で示してあるx=2πのところは定義域外なので注意して欲しい。

もしこれを、三角関数の微分を知らない文系さん用の入試問題に出したのであれば、落とすことを目的にした大学入試の問題とは言え、(2)は「数学嫌い」や「数学アレルギー」を作るだけで、いただけない。



タグ:三角関数

この広告は前回の更新から一定期間経過したブログに表示されています。更新すると自動で解除されます。