SSブログ

第11回 2次方程式と解の公式 [ネコ騙し数学]

第11回 2次方程式と解の公式


二次方程式の話をする前に、次のことを確認しておくにゃ。

   

また、

  

そして、最後に因数分解の次の公式。

  ch-11-01.png


§ 二次方程式

2次方程式とは2次の多項式で表される方程式のことで、そのの一般形は次のようになる。

  

この2次方程式をどうやって解くかというと、先に述べて3つの知識を使って、式を変形して解を求める。

たとえば、

  

であったら、

  

といった具合に解く。

あるいは、4を右辺から左辺に移項し、

  

と解く。最初に上げたように、(x+2)(x−2)=0ならば「x+2=0」または「x−2=0」となり、「x=−2」または「x=2」となり、これがこの二次方程式の解になる。

例1 次の二次方程式を解け。

  

【解1 因数分解して解を求める】

  

【解2 平方完成をして解を求める】

x²−3x+2=0を平方完成する。

  ch-11-02.png

よって、

  


例1のように因数分解が簡単にできる場合は、例1を見れば分かるように因数分解をして二次方程式を解いたほうが楽。しかし、次の例のように簡単に因数分解ができない場合がある。


例2 次の方程式を解け。

  

【解】

【因数分解による解法】

足して2になる、つまり、a+b=2で、掛けて−1になる、つまりab=−1になるabは何だろう(・・?

因数分解を利用した解法だと、ここで行き詰まってしまう(^^


【平方完成による解法】

  

例2を見れば分かるように、【平方完成による解法」の方が利用範囲は広い。だけど、いちいち、平方完成するのは面倒くさい。

ということで、公式を作るにゃ。

§ 解の公式

二次方程式の一般形は

  

これを平方完成の手法を用いて解くことにするにゃ。
  

ということで、

  

この最後の式が、二次方程式の解の公式と呼ばれるもの。
  


そして、この解の公式を覚えておけば、いかなる二次方程式の解も求めることができる。

例2の場合、a=1b=−2c=1だから

  

と求めることができる。

ちなみに、

  


問題1 次の二次方程式を解け。

(1) x²−4x+3=0

(2) x²-4x+1=0

【解】

(1) これは簡単に因数分解できるので、因数分解して解く。

  


(2) これは簡単に因数分解できないので、解の公式(または、その大本の平方完成)を使って解く。

x²-4x+1=0だから、a=1b=−4c=1として、解の公式を使う。

  


問題2 xについての二次方程式

  

の解のひとつが1であるとき、aの値ともうひとつの解を求めよ。

【解】

x=1が①の解なので、x=1を①に代入すると、

  

a=−3のとき、①にこれを代入すると、

  

となり、もうひとつの解は−1

a=4のとき、

  

で、もうひとつの解は6である。

独り言ですが、二次方程式をx²+px+q=0とし、その解をαβとすると、

  

となり、xの係数を比較すると、

  

となるので、これを使って解くこともできる。

a=−3のとき、p=0q=−1。で、一方の解をα=1とすると、解と係数の関係より

  

になるのだから、β=−1と、もうひとつの解を求めることできる。
同様に、a=4のとき・・・。

タグ:中学数学

第10回 平方根 [ネコ騙し数学]


第10回 平方根


§ 平方根

2乗するとaになる数、すなわち、

   
の解(根)をa平方根という。

前回、y=x²をやった。このグラフは次のようになる。


ch-10-01.jpg

このグラフを見ると、a>0のとき、y=x²=aを満たすxが正と負、2つあることが分かる。

そこで、x²=aを満たす正の数を+√aとし、負の数を−√aと定義する。

ただし、x²=0のとき、x=0とする。

つまり、

  

というわけだにゃ。

これは言葉の問題になるのだけれど、「4の平方根」とは「x²=4を満たす実数x」のことで、x=±2となる。aの平方根は、a>0ならば、2つあるにゃ。

対して、√4、すなわち、「ルート4」は2だにゃ。

aの平方根を求めよ」と言われたら、±√aと答えないといけないにゃ。√aだけじゃ〜、駄目だケロよ。


x²=aを満たす方程式の解、根が±√aだから、当然、

  

になるケロ。

また、正数abに対して

  

すなわち、

  

になるにゃ。

このことは、2次関数y=x²のグラフより明らかでしょう。


で、さらに、a≧0ならば

  


§ 有理数と無理数

有理数とは、整数pqを用いて

  

と既約分数の形であらわすことのできる数のこと。

そして、有理数は、小数で表した時に、

  

といったように、有限桁の小数であらわされるものの他に

  

といったように循環する数字の列で表される循環小数というものがあり、有理数はこの2つで構成されている。

で、こういうふうに整数の既約分数で表せない数のことを無理数という。この代表的な数として、√2や円周率π、ネイピア数eなどがある。


ということで、√2が有理数でないことの証明をするにゃ。

この証明には、悪名高い「背理法」と呼ばれる証明法が使われるにゃ。
【証明】

2が有理数であると仮定する。

であるとするならば、有理数の定義より

  

と既約分数で表される整数pqが存在する。

①の両辺を2乗すると、

  

pの2乗、が偶数なので、pは偶数。偶数なので、p=2kと表せる整数kが存在する。これを②に代入すると、

  

になる。上の議論と同様に、qは偶数となり、q=2lとあらわすことのできる整数lが存在する。

ところで、先に仮定したように

  

は既約分数。

だけど、分子、分母であるpqは共通の因数2をもち、既約分数ではない。

 ――既約分数とは、分子と分母が1以外の公約数を持たない分数。なのに、2という公約数を持っていることになる!!――

何故、このような矛盾が生じたかというと、「√2が有理数である」という仮定が間違っていた、「偽」であったから。

よって、√2は無理数である。

(証明終わり)

 


§ 平方根の計算

a>0b>0のとき

  

が成り立つ。

平方根の分母の有理化

  


問題1 が6と8の間にあるとき、整数nを求めよ。

【解】

  

だから、

  

よって、n=6,7,8

 


問題2 x=√3−√2y=√3+√2のとき、x²−xy+y²の値を求めよ。

【解】

真面目に計算してもいいけれど、計算が大変だにゃ。そこで、次のように計算を工夫する。

  

で、

  

よって、

  


これは、よく使う計算上のテクニック!!


問題3 √2の小数部分をaとするとき、√32の小数部分をaを用いてあらわせ。

【解】

1<√2<2だから、a=√2−1になる(※)。

  

また、 だから、この小数部分は

  



(※) √2=1.414・・・=1+0.1414・・・=1+aだから、a=√2−1となる。


タグ:中学数学

第9回 2乗に比例する関数 [ネコ騙し数学]

第9回 2乗に比例する関数


§ 2乗に比例する関数

2乗に比例する関数

yxの2乗、に比例する関数のことで、これは次のように表される。

  

aを比例定数と呼ぶ。

中学校ではこのように教えるらしい。要するに、もっとも簡単な二次関数のことだケロ。


y=x²のとき、値は、次のようになる。



次のグラフを見れば分かる通り、y=ax²のグラフはy軸について対称であり、また、y=ax²y=−ax²x軸について対称である。


ch-09-01.png

知っていると思いますが、とは

  

のことで、たとえば、

  

である。

変化率

x=x₁x=x₂y=ax²の変化率は

  

となる。

これはもっと簡単になって、

  

になる。

ここからは逸脱になるけれど、もし、x₂が限りなくx₁に近づけば、

  

となり、y=ax²x=x₁における微分係数になる。そして、この値は、y=ax²x=x₁の接線の傾きである。

あまりに書くことがなかったので、もののついでに書いただけだにゃ。



§ 放物線と直線の交点

y=ax²y=bx+cの位置関係をあらわすグラフを以下にしめすにゃ。

ch-09-02.jpg

abcの値によって、2点で交わるときもあれば、1点で接するとき、そして、交わったり接したりしない3つの場合がある。


交点のx座標は、

  

という連立方程式から求められて、

  

とい二次方程式から求められる。

もっとも、解(実数解)があればだよ、あれば。


中学校では虚数や複素数を数として認めていないからね。この点は重要だケロ。

この流れで一気に解の公式や二次方程式の判別式の話をしてもいいけれど、今はしないにゃ。

 


問題2 yxの2乗に比例し、x=2のときy=−12である。このとき、x=−1のときのyの値を求めよ。

【解】

y=ax²とする。x=2のとき、y=−12なので、これをy=ax²に代入すると、

  

よって、x=−1のとき

  



問題3 y=ax²のグラフが(4,4)を通るとき、次の問いに答えよ。

(1) aの値を求めよ。

(2) xの値が4から6まで増すときの変化の割合を求めよ。

【解】

(1) y=ax²(x,y)=(4,4)を通過するので、

  


(2) 変化の割合は

  


変化の割合は、⑨を使って、次のように計算してもいいケロよ。

  



問題4

放物線に関して、次の問いに答えよ。

ch-09-03.jpg

(1) 点Aは原点以外のx座標とy座標が等しい放物線上の点である。点Aの座標を求めよ。

(2) 直線ABy切片が4のとき、この直線の傾きを求めよ。また、点Bの座標を求めよ。

(3) △OABの面積を求めよ。

【解】

(1) 点Ax座標をaとすると、点Aは放物線上にあるので、点Ay座標はy=a²/2となる。

よって、

  

Aは原点ではないので、a=0は不適。よって、a=2となり、点Aの座標は(2,2)


(2) 直線ABの傾きは

  

y切片は4なので、直線の方程式は

  

この直線と放物線の交点を求める。

  

よって、Bx座標はx=−4となり、

  

以上のことから、点Bの座標は(−4,8)

(3) △OABの面積は△OCAと△OBCの面積の和。

  


(2)でBy座標と求めるとき、直線の方程式を使って

  

としてもいいケロ。

タグ:中学数学

第8回 直線 [ネコ騙し数学]

第8回 直線


これまでやってきたことの復習と”まとめ”をかねて、中学数学の延長として高校数学の内容を少し含めて話をするにゃ。


1 直線の方程式

(1) 傾きay切片bの直線 y=ax+b

(2) 点(x₀,y₀)を通り、傾きaの直線 y−y₀=a(x−x₀)

(3) 2点(x₁,y₁)(x₂,y₂)を通る直線の方程式

   

(4) x切片py切片qの直線の方程式

  


(4)の式ははじめて出てきたと思うんで、これだけ、説明することにする。

x切片とは、直線とx軸(y=0)の交点のx座標のこと。だから、(4)の直線は2点(0,q)(p,0)を通る直線。(x,y)=(0,q)(x,y)=(p,0)

  

に代入すれば、左辺は1になるので、これがその直線の方程式であることが分かる。

論より証拠というわけで、次の図を見れば、このことが分かるにゃ。


ch-08-01.jpg



2 2直線の位置関係

2直線y=mx+ny=m'x+n'について

(1) 平行条件 m=m'   (さらに、n=n'ならば2直線は一致)

(2) 垂直条件 mm'=−1

ネムネコは、高校数学の教科書を持っていないので、教科書で(2)の垂直条件をどのように導いているかは知らない。だけれども、ベクトルを使うのならば、y=mx+nの方向ベクトルy=m'x+n'の方向ベクトルになる。この2直線が垂直なので、この2つの方向ベクトルが垂直ということになり、ベクトルの内積を使うと、

  

と簡単に出てくる。

中学レベルの知識を使ってこのことを示そうと思ったけれど、これは図に頼った証明になるのでやめるにゃ。mm'が異符号であることを無前提に使っているから、こういう証明はちょっと危ないにゃ(^^)


問題1 次の直線の方程式を求めよ。

(1) 傾きが3で点(2,−4)を通る。

(2) 点(2,−5)を通りy軸に平行な直線。

(3) 2点(−5,3)(2,−1)を結ぶ直線。

(4) x切片が3y切片が-4

【答】

ch-08-02.jpg


 


問題2 2直線y=2x+a+3y=3x+2aが第2象限で交わるためのaの値の範囲を求めよ。

【解】

2直線y=2x+a+3y=3x+2aの交点を求める。

  

yを消去すると、

  

よって、

  

交点が第2象限(x<0y>0)にあるので、

  

よって、3<a<9

 


問題3 次の直線の方程式を求めよ。

(1) 点(−1,1)を通り、直線x+3y=0に平行な直線および垂直な直線。

(2) 2点(6,−2)(−3,1)を結ぶ線分の垂直2等分線。

【解】

(1)

  

よって、この直線に平行で点(−1,1)を通る直線は

  


に垂直な直線の傾きをmとすると、

  

よって、

  


ch-08-03.jpg

(2) 欲しいのは2点(6,−2)(−3,1)を結ぶ直線の方程式ではなく、傾きだけだケロ。ということで、傾き求める。

  

この線分に垂直な直線の傾きmとすると、

  

垂直二等分線なので、(6,−2)(−3,1)の中点を通る。

ということで、中点求める。

  

よって、求める直線は

  



ch-08-04.jpg




タグ:中学数学

第7回 二元一次方程式のグラフと連立一次方程式 [ネコ騙し数学]

第7回 二元一次方程式のグラフと連立一次方程式


§ 二元一次方程式のグラフ

二元一次方程式の一般形は、

  

ただし、abは同時に0でない。

a≠0b≠0のとき、①は

  

となり、傾きがy切片がの直線になる。

a=0のとき、

  

となり、x軸に平行な直線になる。

b=0のとき

  

となり、y軸と平行な直線になる。

いずれにせよ、ax+by=cを満たす(x,y)は直線の方程式になる。


(1) 5x−3y=−15

これをyについて解くと、

  

だから、傾きが5/3y切片が5の直線になる。


(2) y=5

これは、y=5x軸に平行な直線。


(3) x=2

これはx=2y軸に平行な直線。

グラフで表現すると、次のようになる。


ch-07-01.jpg

問題 直線kx−y=3kについて

(1) y切片が3であるときのkの値を求めよ。

(2) 直線y=2x+1と平行となるようなkの値を求めよ。

(3) kがいろいろな値をとるとき、この直線はある決まった点(不動点)を通る。その点の座標を求めよ。

【解】

(1) kx−y=3kx=0y=3を代入すると、

  


(2)

  

y=kx+3ky=2x+1が平行だから、傾きが等しく、k=2となる。

 


(3)

  

だ・か・ら、kの値にかかわらず、x=3y=0のとき、⑨式は0になる。よって、(3,0)


ch-07-02.jpg


§ 二元一次方程式のグラフと連立方程式の解

次の二元一次連立方程式があるとする。

  

①と②ともに直線なので、この連立方程式の解はこの2直線の交点になる。

具体的な例をだしたほうがわかりやすいので次の連立方程式を考えることにする。

  

②は①の両辺を2倍にしたものだから、この連立方程式の解はy=−2x+3という直線上のすべての点となり、解は一つに定まらない(不定)。

②が①の0以外の定数倍のときも事情は同じ。

つぎに、

  

という連立方程式を考える。

①は傾き−2y切片は3。②は傾き−2y切片は5。傾きが同じなので、①と②の直線は平行で、この②直線が交わることはない。つまり解はない(不能)。

といことで、

  

という連立方程式の解が一つであるためには、①と②が平行でないことが必要な条件になる。

このことは行列を使うとわかりやすい、この連立方程式を行列で書くと

  

となる。

で、もし

  

という行列が逆行列をもつと

  

がただひとつの解になる。

Aが逆行列をもつ条件は、

  

よって、これが二元連立一次方程式が解をもつための必要十分条件になる。

今、書いている部分の話は、中学の数学の範囲を超えているので、①と②が平行のとき、この連立方程式は解けない、ということだけを覚えて欲しい。

 ――内緒話だが、③はが平行でない必要十分条件!!――


問題2 2直線x+y=6x+ay=−6が直線y=2x上で交わるとき、aの値を求めよ。

【解】

x+y=6y=2xは、互いに平行じゃないから解を持つケロ。

だから、まずこの交点を求めるにゃ。

  

y=2xx+y=6に代入すると、

  

y=2xだから、x=2のとき、y=4になるにゃ。

この(2,4)x+ay=−6が通過するので、

  



問題3 −x+y=1x+y=3y=k(x+3)が三角形を作らないようにkの値を定めよ。

【解】

x+y=1x+y=3の交点は(1,2)。この点をy=k(x+3)が通過するとき三角形にならないケロ。

だから、

  

これだけではないケロ。

x+y=1y=k(x+3)が平行のとき、この2直線は交わらない。ということで、k=−1

同様に、x+y=3y=k(x+3)が平行のときにもこの2直線は交わらない。よって、k=1

だから、答えは

  


ch-07-03.jpg




タグ:中学数学

第6回 一次関数とそのグラフ [ネコ騙し数学]

第6回 一次関数とそのグラフ


§一次関数

一次関数とは、2つの変数xyの関係が

  

で表される関数のこと。

上の式から明らかなように、b=0のときは、y=axとなり、yxに比例する。

  

と変形すれば、y−bxに比例すると考えることもできる。

(x₁,y₁)(x₂,y₂)という点がy=ax+bを満たすならば、

  

となるので、③−②は

  

となり、

  

になる。

このことは、y=ax+bをグラフに描いた次のものを見ればよくわかると思う。


ch-06-01.jpg

また、②にこの結果を代入すれば、

  

これを①式に代入し整理すると、

  

となる。

そして、これは、2点、(x₁,y₁)(x₂,y₂)を通る直線の方程式と呼ばれるものだケロ。


④式は高校の数学の範囲になるので、中学数学に戻ることにするにゃ。


問題1 yxの一次関数で、xの値が1増すごとにyの値は3ずつ増し、x=2のときy=−1である。この一次関数を求めよ。

【解】

この一次関数をy=ax+bとする。

このとき、

  

だから、

  

また、x=2のときy=−1なので、これをy=ax+bに代入すると、

  

よって、y=3x−7

§一次関数のグラフ

一次関数y=ax+bのグラフは、直線y=axに平行で、点(0,b)を通る直線。

このaを直線の傾きby切片という。


ch-06-02.jpg

これも中学の範囲を逸脱するけれど、傾きがmで点(x₀,y₀)を通る直線の方程式は

  

で与えられる。

上の式にx=x₀を代入すれば、y=y₀になるし、y=y₀を代入すれば、x=x₀になることから、これが条件を満たしていることは明らかでしょう。


ちなみに、2直線

  

があるとき、m=m'ならば、この2直線は互いに平行であり、平行であるならばm=m'でならなければならない。

では、問題。


問題2 次の直線を求めよ。

(1) y=−3x+1に平行で、点(3,2)を通る直線。

(2) 2点(1,2)(3,8)を通る直線。

【解】

(1) y=−3x+1と平行な直線なので、傾きは−3

で、⑤を使うのならば、(x₀,y₀)=(3,2)なので

  

使わないのならば、y=−3x+bとおき、これが(3,2)を通るので、x=3y=2を代入し

  

よって、求める直線はy=−3x+11


(2) この直線の方程式をy=ax+bとする。

この直線は2点(1,2)(3,8)を通るので、x=1y=2、さらに、x=3y=8を代入すると、

  

となる。

代入法を使って上の連立方程式を解いてもいいけれど、②から①を引くとbが消えるので

  

となる。

①と②のどちらにa=3を代入してもいいけれど、①の方が計算が楽なので①に代入し、

  

よって、求める直線はy=3x−1となる。

④を使うならば、(x₁,y₁)=(1,2)(x₂,y₂)=(3,8)として、

  

と出てくる。

あるいは、傾きa

  

とすぐに出るから、y=3x+bとし、これが(1,2)を通過するので、x=1y=2を代入する。

  

と計算してもいい。

x=3y=8のときは

  

となる。

ch-06-03.jpg


問題3

(1) 下の図の直線ABをの式を求めよ。

ch-06-04.jpg

(2) 直線y=3x+bが線分ABの中点を通るようにbの値を定めよ。
【解】

(1) 図よりy切片は4。傾きは

  

よって、y=−2x+4

(2) 中点の座標は

  

この点をy=3x+bが通るので、x=1y=2を代入し、

  

ch-06-05.jpg



タグ:中学数学

第5回 比例・反比例 [ネコ騙し数学]

第5回 比例・反比例


§比例

比例

2つの変数、xyの間に次のような関係があるとする。

  

このとき、yxに(正)比例するといい、定数a比例定数という。







これはy=3xという関係があり、yxに比例し、比例定数a=−3となる。

ちなみに、yxに正比例し、x≠0ならば、

  

になる。

aは、定数だから、当然、変化しない。もし、xyの値によってaの値が変わるのならば、xyは比例関係にないことになる。


y=axのグラフから明らかなように、a>0ならば右上がりの原点を通る直線となりa<0ならば右下がりの原点を通る直線となる。


ch-05-01.jpg


問題1 yxに比例し、x=3のときy=−6である。x=−4のとき、yの値はいくらか。

【解】

y=axとすると、x=3y=−6なので、

  

よって、x=−4のとき

  


たぶん、こう解くのが模範解答なのでしょう(^^


【別解1】

x=−4のときのyの値をyとする。xyは比例関係にあるので、

  


【別解2】

小学校レベルの知識を使うならば、

  

内項の積=外項の積だから、

  


どう解かなければならないということはないだろう。一番楽なのは別解1だと思うけれど、別解2で解いても構いやしない(笑)。


問題2 直線y=axが点A(1,2)と点B(3,1)を結ぶ線分ABを通るとき、aはどんな範囲の数か。

【解】

こういう時こそ、グラフの出番だケロ。


ch-05-02.jpg

この図からほとんど明らかだけれど、aが最小の時は点B(3,1)を通るときで、aが最大の時はA(1,2)を通るとき。

Bを通るとき、

  

Aを通るとき

  

よって、

  



§反比例

反比例

2つの変数、xyに次の関係があるとき、yxに反比例するという。

  

上の関係からxy=a=一定となるにゃ。
グラフは次のようになる。


ch-05-03.jpg

a>0
のとき、y=a/xの曲線は第1象限、第3象限にあり、a<0のときy=a/xは第2象限、第4象限にある。また、この曲線は原点について対称である。


問題3 反比例をあらわすグラフが点(1.5,8)を通るとき、このグラフ上の点(x,y)で、xyがともに整数である者はいくつかるか。

【解】

反比例なのだから

  

よって、

  

x>0で考えると、xyが整数になるのはxが12の約数のとき。だから、x={1,2,3,4,6,12}の6個。x<0の時も同様に6個あるので、12個。


こんな問題ばかり解いていると⑨になりそうだにゃ(>_<)


問題 x>0で定義された

  

という曲線があるとする。この曲線上の点Pに接する接線とy軸との交点をAx軸との交点をBとする。

このとき、

(1) Pは線分ABの中点であることを示せ。

(2) △OABの面積は点Pの位置によらず一定であることを示せ。

【解】

ch-05-04.jpg


  

とし、点Px座標をaとする。

接線の方程式は、

  

だから、

  

よって、点Ay座標は

  

Bx座標は

  


(1) 線分ABの中点を求めると

  

で、点Pである。

(2) △OABの面積S

  

よって、Pの位置にかかわらず一定値2kである。


この問題は、ひょっとしたら微分積分の時にやったかもしれないけれど、面白い性質なんじゃ〜あるまいか。
そして、こうしたことを面白い、何故だろうなんだろうと思う感性は大切なんじゃなかろうか。


タグ:中学数学

第4回 関数と座標 [ネコ騙し数学]

第4回 関数と座標


§関数

ともなって2つの変わる量


個数(個)



1



2



3



4



5



6



代金(円)



80



160



240



320



400



480



上の例の個数と代金のように、一つの量が変わるに連れてもう一方の量が変わるような量をともなって変わる2つの変わる量という。

いろいろと変わる数量を一つの文字であらわし、いろいろな値をとる文字を変数、変数の取りうる範囲を変域という。

上の例で、個数をx、代金をyとすると、xyの間にはy=80xという関係がある。

xの変域 {1, 2, 3, 4, 5, 6}

yの変域 {80, 160, 240, 320, 400, 480}

関数

変数xyがあって、xの値を決めるとyの値がひとつだけに決まるとき、yx関数という。

中学では、このように関数を教えるらしい。難しいケロ。


問題1 まわり40cmの長方形がある。縦の長さをxcm、横の長さをycmとして、次の問いに答えよ。

(1) yxの式であらわせ。

(2) x=5のときのyの値を答えよ。

(3) yxの関数と言えるか。

【解】

(1) 2(x+y)=40だからx+y=20。よって、y=20−x

(2) x=5のとき、y=20−x=20−5=15
(3) xの値が与えられるとyの値もただひとつ決まるので関数である。


この問題にはないけれど、xの変域(定義域)は0<x<20yの変域(地域)も0<y<20



§座標

座標

下の図で、横の数直線をx軸、縦の数直線をy軸といい、x軸とy軸を合せて座標軸という。さらに、x軸とy軸の交点を原点と言いOであらわす。


ch-04-01.jpg

点の座標

上の図の点Pの位置は、Pからx軸、y軸におろした垂線と座標軸の交点の座標(?)34をの組(3,4)Pの座標という。また、3Px座標、4Py座標という。

象限

座標軸で分けられた4つの部分。上図の①を第1象限、②を第2象限、③を第3象限、④を第4象限という。

 


§中点

2点(x₁,y₁)(x₂,y₂)の中点の座標は

  

である。

(a,b)x軸について対称な点は(a,−b)、y軸について対称な点は(−a,b)であり、原点について対称な点は(−a,−b)である。


問題2 点(3,−2)について、点(1,2)と対称な点の座標を求めよ。

【解】

対称な点の座標を(x,y)とする。このとき、

という関係があるので、x+1=6y+2=−4となり、(x,y)=(5,−6)となる。

問題3 点A(2,4)B(6,2)がある。

(1) 点Aと原点Oについて対称な点の座標を求めよ。

(2) 平行四辺形AOBCをかき、点Cの座標を求めよ。

(3) 平行四辺形AOBCの面積を求めよ。

【解】

ch-04-02.jpg

(1) (−2,−4)

(2) (8,6)

(3) ABからx軸への垂線をおろし、x軸との交点をA'B'とする。

  △AOB=△AOA'+台形AA'B'B−△BOB'

になる。

  

平行四辺形の面積はこの2倍なので、答えは20。

中学の範囲を超えるけれど、ベクトルを使うならば、

  

そして、(3)は

  

で与えられる。

で、

  

とすると、

  

になるということをやったにゃ。

だから、

  

と、簡単に暗算で出てくるのであった。
タグ:中学数学

中学数学 第3回 不等式 [ネコ騙し数学]

第3回 不等式



不等式の性質

(1) abの大小関係は、a>ba=ba<bのうちのどれか一つが成立する。

(2) a>bb>cならばa>cである。

(3) a>bならばa+c>b+cである(cは任意の実数)。

(4) a>bのとき、c>0ならばac>bcc<0ならばac<bc


これは数(実数)の公理みたいなものだから、何故、これは無条件で受け入れてもらわないと困るにゃ。


例題 a>bc>dのとき、a+c>b+dであることを証明せよ。

【証明】

a>bならばa+c>b+c

c>dならばb+c>b+d

よって、

a+c>b+cb+c>b+dならば、a+c>b+d

(証明終わり)


では、不等式の基本的性質に関する問題。


問題1 次のことは一般に成り立たない。成り立たない例(反例)をあげよ。
(1) a>cb>cならばab>c²

(2) a>0bは任意の実数のときab²>0

(3) b/a>1ならばb>aである。

【解】

大体、こういう時は、マイナスの数の掛け算(割り算)が関係しているにゃ(^^)

ということで、

(1) a=b=1c=−2

3) b=−2a=−1

(2) a=1b=0


問題2 a+b>cb+c>ac+a<bのとき、abcの間にはどの関係が成り立つか。

(1) a>b>c  (2) b>ca>c  (3) b>cb>a

(4) b>c>a  (5) b>a>c

【解】

成り立つのは(3)だけ。

a+b>cb>c+aより、

  

b+c>ab>c+aより

  

よって、(3)は成立する。

(3)以外が成り立たない反例として、a=c=0b=1を上げればいいにゃ。


問題にはないのだけれど、

a+b>cb+c>aより

  

という関係が出てくるにゃ。

問題3 次の問を答えよ。

(1) 不等式2x−8>4x+5の解のうちで、最も大きい整数を求めよ。

(2) ある数xの5倍から6を引いた数は、xの3倍に2加えた数より小さい。xはどんな範囲の数か。

【解】

(1)

  

6.5より小さい整数の最大の数は−7なので、答えは−7。

(2) 5x−6<3x+2

これを解くと、

  

よって、答えはx<4

問題4

  

を同時に満たす整数x,yの組(x,y)をすべて求めよ。

【解】

  

①より

  

これを②に代入すると、

  

①を解くと

  

②を解くと

  

よって、6<x<9

これを満たす整数xは7、8。

x=7のとき

  

x=8のとき

  

よって、題意を満たす組み合わせは(8,5)

タグ:中学数学

中学数学 第2回 連立一次方程式 [ネコ騙し数学]

中学数学 第2回 連立一次方程式



連立方程式とは、方程式が2つ以上組み合わされたもの。次のように

  

のように、 未知数が2つの連立一次方程式を、連立2元一次方程式という。

連立2元一次方程式の一般形は、

  

になり、行列を使うと

  

と表される。

で、連立一次方程式の解法としては、代入法、加減法と呼ばれるものがある。


代入法の例

  

①をyについて解くと

  

これを②に代入すると、

  

x=2を③に代入すると、

よって、x=2y=−1が解となる。


ch-02-01.jpg


加減法の例

  

①と②をじっと見て、最初にどちらを消去したいか考える。この場合、どっちでも似たようなものなので、yを消去することにする。

yの係数の絶対値を同じにするために、①に3を掛け、②に2をかける。

  

で、③と④を足すと6yが消える。

  

①、②のどちらにx=3を代入してもいいけれど、①に代入すると、

  


ch-02-02.jpg

「何で、オレがこんな計算をしなければならないんだ」と、だんだん腹が立ってくる(^^


問題1 abで割ると商が3で余りが8になり、aの3倍をbで割ると商が11で余りが2になるような、2つの正数があるか。あればその2数を求めよ。

【解】

(割られる数)=(割る数)×(商)+(余り)

だから、

  

①を②に代入すると、

  

これを①に代入して

  

となる。

a=41b=11は題意を満たすので、a=41b=11である。


問題2 y=ax+bと表される等式で、x=2のときy=1x=5のときy=10である。abの値を求めよ。

【解】

x=2のとき2a+b=1x=5のとき5a+b=10

  

となる。

②から①を引くとbが消えるケロ。

 ――ケロケロしないと、ネムネコの精神の均衡が保てない!!――

  

a=3を①に代入すると、

  

a=3b=−5は題意を満たすので、これが答え。

この問題2は2点を通る直線の方程式を求めている。

このことは、次の図を見るとよくわかると思う。

ch-02-03.jpg

直線の傾きa

  

になっているし、y切片b5になっている。


タグ:中学数学

この広告は前回の更新から一定期間経過したブログに表示されています。更新すると自動で解除されます。